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Abstract

Using the model developed by the author [1] for zero-pressure gradient turbulent

boundary layers, results are obtained for adverse and favorable pressure gradients. It is

shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates

more than if it were in a favorable pressure gradient one. Therefore, the noise generated

by the plate in an adverse pressure gradient is much greater than that due to the plate in a

favorable pressure gradient. The effects of Reynolds number and boundary layer thickness

are also analysed and found to have the same effect in both adverse and favorable pressure

gradient cases. Increasing the Reynolds number is found to increase the loading on the

plate and therefore acoustic radiation. An increase in boundary layer thickness is found

to decrease the level of the high frequencies and therefore the response and radiation

at these frequencies. The results are in good qualitative agreement with experimental

measurement s.

1. Introduction

Pressure gradients in supersonic turbulent boundary layers arise in many practical

engineering problems. For instance, the exterior curved surfaces of a high speed civilian

and military aircraft, the engine inlets of such aircrafts, in turbomachinery and missiles.

Because of the renewed interest in a civilian supersonic transport, scientists and engineers

are investigating the problem of pressure gradients and their impact on structural fatigue
and interior noise.

Spine et el. [2] wrote a review paper on the physics of supersonic turbulent boundary

layers. In particular, an indepth discussion of adverse and favorable pressure gradients as

well as streamline curvature was given. They stated that in an adverse pressure gradient

boundary-layer, as the pressure increases, the boundary-layer thickness decreases and the

wall-shear-stress increases. However, the exact opposite happens in a favorable pressure

gradient boundary-layer. Concave streamline curvature (associated with adverse pressure

gradients) tends to enhance mixing and therefore destabilize the boundary-layer; while

convex curvature (associated with favorable pressure gradients) has a stabilizing effect.



A similar review article was written by Smith and Smits [3]. They highlighted the dif-

ferences between subsonic and supersonic boundary-layers, in particular, the absence of

similarity between the two cases in the presence of pressure gradients.

Bowersox and Buter [4] carried-out an experimental investigation of a Mach 2.9 tur-

bulent boundary-layer with mild favorable and combined pressure gradients. They used

Laser Doppler Velocimetry (LDV) and cross film anemometry to measure the Reynolds

shear stress. They found that, in a favorable pressure gradient the shear stress was re-

duced by as much as 50 to 100%. Webster et al. [5] studied experimentally the turbulent

statistics of a boundary layer over swept and unswept bumps. They observed that the

boundary layer grew rapidly on the downstream side of the bump but did not separate.

Also the meanflow profiles deviate significantly from typical logarithmic layer behavior.

In all the above studies, there was little or no-mention of the wall pressure fluctuations

and how they are effected by pressure gradients. For interior noise and sonic fatigue, wall

pressure fluctuations is an important quantity to measure. However, tiffs is a very difficult

measurement to make as the transducers have to be small enough in size and perfectly flush

to the surface for such measurements to be meaningful. Maestrello [6] measured the wall

pressure fluctuations in a wind tunnel at several supersonic Mach numbers in addition to

the mean velocity profile and flexible panel response measurements. He found that strong

coupling exists between the flow and the flexible panel response at these high speeds.

Computationally, in order to accurately calculate the wall pressure fluctuations, one

needs to use Direct Numerical Simulation (DNS). However, tiffs is not possible for realistic

engineering problems. A Large Eddy Simulation (LES) calculation could be performed

for simple engineering problems, however, models are still being formulated to accurately

capture the subgrid scale contributions to the various physical phenomena. In the in-

dustrial world, empirical models are still the main tool used to represent wall pressure

fluctuations. In particular, the Corcos [7] and Efimstov [8] models are widely used. How-

ever, these models do not take into account pressure gradients and surface curvature. In

addition, they require experimental data in order to be used. Moreover, a recent LES

calculation by Singer [9] showed that the Corcos model does a poor job at reproducing

the correct coherence in directions that are at an angle with the downstream or cross-flow

directions. Therefore, there is an urgent need for better models that represent the wall

pressure fluctuations with or without pressure gradients and wall curvature.

In this paper, the mathematical model developed by the author [1] for zero pressure

gradients is extended to account for favorable and adverse pressure gradients as well as

wall curvature. A combination of concave and convex surfaces is chosen. In order to avoid

the problem of shock-boundary-layer interaction, a smooth compression corner is used.

The remainder of the paper is organized as follows; in section (2) the mathematical model

is derived, the method of solution is described in section (3) and the results and discussion

in section (4). The concluding remarks are given in section (5).



2. Mathematical Model

2.1 The Turbulent Boundary Layer Equations

Using the triple decomposition proposed by W.C. Reynolds [10], the flow quantities

are decomposed as follows;

g=_W_+g" (1)

where g represents a flow quantity and (_) its Favre averaged mean defined by

_ (Pg) (2)

When decomposing the density, the turbulent fluctuations, p', are neglected by virtue

of Morkovin's hypothesis [11] which has been recently verified by Sommer e_ al. [12],

therefore;

p=:+_. (3)

In equations (1) and (3), (_, _) is the low frequency variation part of the mean and (g")

is the turbulent fluctuation.

By defining the total mean to be

G -_+_, (4)

equation (l) becomes

g=c+g" (5)

In the derivation of the dynamic equations used by W.C, Reynolds, a conditional

averaging was introduced. Some properties of this averaging are;

<g" >=0 <_f>=_</>

<_f >=_<f> <g"'--_=_=<_> (6)

_f,,= < _f,,> = o.

Using the decomposition given by equation (5) in the continuity, momentum, energy

and state equations along with the conditional averaging and Einstein summation conven-

tion one arrives at the following mass, momentum, energy and state equations;

+ (pUi) = O, i = 1,2,3 (7)

o u o [?u_uj- < > +p < ,, ,, >] + oP
-_(p i)+-_x j Tij UiU j Oxi --O, i,j = 1,2,3 (8)

OE 0

O---_+-_j [(E+ P)Uj- < T,j > Uj+ < e"u_ > + <p"u_ >-<'r u'! >] =O,,, (9)
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P = (7- 1)[E- p(U_ + U_ + U{+ < (u_l) 2 > + < (u_l) 2 > + < (u_') 2 >)/2]. (10)

In equations (7)-(10), (p, U_, E, P) represent the total means of the variables (p, u_, e, V),

while (u_', u_', e", p") are the turbulent fluctuations, The variable (e) is the total energy

defined as e = p/(.'), - 1) + p(u 2 + u22 + u_)/2. In equations (8) and (9), < r,j > is the

conditionally averaged stress tensor,

Moo [ ( OU_ OUj'_ 20Uk 6, ]< _'J >= Re--;_' \ O.j + O.,] - -5_'-££ q' (11)

where Moo, Rel., and/_ are the freestream Mach number, Reynolds number and molecular
_ ,l. II

viscosity, respectively. The term < _i "_j > of equation (8) is similar to the Reynolds
1,- 'l --II- I!

stress tensor and is modeled in the same way. In equation (9), < e uj >, < >P "'V and
.. //

< _-_juj > have to be modeled.

Invoking the Boussinesq approximation that the Reynolds stress tensor is proportional

to the mean strain-rate tensor, leads to

,I . 2 k 1 6" (12)

where k =< -,,.i-_i-"- " > /2 is the turbulent kinetic energy,/2t is the turbulent eddy viscosity

and Sij is the mean strain-rate tensor given by,

.....s,; = 5 Lax; + _7_,J (13)

The turbulent eddy viscosity is obtained from the relation

I_, =C; pk (14)
02

where C;, is a constant, o2 the specific dissipation rate (e/k) with e being the dissipation.

The conservation equations for k and o2 are;

_(pk) + b_7_j(pujk)

+

In equations (15) and (16), i.Ltt = CT_lp(k/w ) and Cojx = C_ 2 -n2/((C_z)°'ba,,,), with

C7, t = 0.09 (same as C;, in the log layer), _k = a_ = 2, C_ 2 = 0.83 and n = 0.41. The

model described above was derived by Wilcox [13] and is known as the (k-w) turbulence
model.



2.2 The Plate Equation

The out-of-plane plate displacement, w, is given by the biharmonic equation,

_ 02wDA2w + pph.-_ + F = 6p (17)

where D is the plate stiffness obtained from D = Evh3/12(1 - v_), with Ep being the

Young Modulus, h the plate thickness and vp the Poisson ratio. In equation (17), pp is the

plate material density and F is the structural damping. The biharmonic term is defined as

The fight hand side, 6p, of equation (17) represents the pressure loading due to the adjacent
fluids and can be written as

5p=p"-p b' (19)

with (p_) being the radiated acoustic pressure and (pbZ) the turbulent boundary layer

pressure calculated from the model in section (2.1).

2.3 The Acoustic Radiation Equation

In order to calculate the pressure p_ of equation (19), Kirchhoff's formula is used to

arrive at (see ref. [14] for details )

po( y,z, t)= /' 2_r R ' J_d='dz' (20)

°2_ In equation (20),where the integration domain, D, is over the whole plate and wt_ = -_-.

the square brackets, [.], are used to denote a retarded time, i.e.

z')] = - (21)

where R = [(z - zz') 2 + y2 + (z - z')2] 1/2 is the distance from an observer point (z,y,z)

to a point on the plate (x', 0, z'). tin equation (21), coo is the speed of sound. Equation

(20) is used to calculate the pressure both on the surface of the plate and in the far-field.

When using equation (20) to calculate the surface pressure, a Taylor series expansion of

the integrand is used to avoid the singularity at R = 0 (when the observer point coincides

with the source).

3. Method of Solution

The turbulent boundary layer equations are solved using the three-dimensional thin-

layer Navier-Stokes code known as CFL3D. [15] The numerical method uses a second

order accurate finite volume scheme. The convective terms are discretized with an upwind



schemethat is basedon Roe's flux differencesplitting method, while all the viscous terms
are centrally differenced. The equations are integrated in time with an implicit, spatially
split approximate-factorization scheme. The thin-layer approximation retains only those
viscous terms with derivatives normal to the body surface. This is generally considered
to be a good approximation for high-Reynolds-number aerodynamic flows with minimal
separation. Two calculations are made for each case;first the steady state mean velocity
profiles areobtained using a large domain that includes the leading edgeof the plate, then
using a smaller domain downstreamof the leading edgean unsteady calculation is carried
out by perturbing the mean velocity profile at the inflow boundary asfollows

u = _ + ER,_(y,z,t). (22)

In equation (22), Rn(y, z, t)is a random number generated using an IMSL routine called

RNNOF [16] and e is a small amplitude chosen to be between 0.05 and 0.25. In the steady

state calculation, the flow in the region upstream of the plate's leading edge is specified as

laminar, while that downstream of the leading edge is turbulent. The plate equation (17) is

integrated using an implicit finite difference method for structural dynamics developed by

Hoff and Pahl. [17] The radiated acoustic pressure, p_, is obtained through a combination

of the Simpson and trapezoidal rules of integration in the (x, z) directions [14].

Coupling between the plate and the acoustic and boundary layer pressure fields is ob-

tained as follows. Using the previous time step plate velocity and acceleration as boundary

conditions, the turbulent boundary layer equations (7)-(10), (15), (16) and the acoustic

equation (20) are integrated to obtain the new surface pressure fields, these are then used

to update the plate equation. This procedure is repeated at every time step.

4. Results and Discussion

This section is divided into several subsections. In subsection (4.1) results from a

large three dimensional computation with adverse and favorable pressure gradients are

presented. Comparisons to experiments are given in section (4.2). The effects of boundary

layer thickness are analysed in subsection (4.3) and that of Reynolds number in subsection

(4.4).

4.1 Combined Adverse and Favorable Pressure Gradients

The flow and structural properties used in this case are as follows; free-stream Mach

number Moo -- 2.4, free-stream temperature Too = 560 R, wall temperature T_ ---- 550 R

and Reynolds number per foot Re/ft = 3.x106. Two titanium plates having the following

parameters are used; length a = 12 inches, width b = 6 inches, thickness h -=- 0.062 inches,

density per unit area pph = 2.315x10 -5 lbf.sec2/in 3, stiffness D = 345. lbf.in and damping

F = 7.4x10 -4 lbf.sec/in 3. The excitation amplitude is set to e = 0.08.

The computational domain shown on fig. 1 is 4xlxl.5 ft in the streamwise, spanwise

and vertical directions, respectively. The number of points used in the respective directions

are, 197x49x81. The bottom surface of the computational domain contains a smooth bump

together with horizontal surfaces. The dimensions of the smooth bump are 3xlx0.2 ft in

the respective directions. The two flexible plates are located downstream of the concave



and convex parts of the bump. The plate centers are located at • = 1.3 ft and x = 9..7

ft in the downstream direction, respectively. The grid is uniform in the streamwise and

spanwise directions and is stretched in the vertical direction as shown by the figure. The

figure shows a higher density of vertical grid points near the wall. The radiated noise is

computed at two positions having the following coordinates, (2, 0.5, 0.) ft and (2., 0.5,

-4.8) ft. The fluid in the acoustic radiation region has the same properties as that in the

supersonic flow region.

Figure 9. shows a three dimensional contour plot of the nondimensional static pressure.

Most of the pressure changes occur over the smooth bump. Over the concave region of

the bump, the pressure increases smoothly from 0.71 to 1.4 and then decreases back to

0.71 at the top of the bump. Over the convex region of the bump, the pressure decreases

from 0.71 to 0.3 then increases back to 0.71. Figure 3 shows the three dimensional static

pressure surfaces in regions of large gradients. Near the leading edge of the bump, the

pressure increases rapidly, resulting in a series of compression waves that coalesce into

an oblique shock-wave away from the surface. Near the top of the bump, the pressure

decreases rapidly generating a series of expansion waves away from the surface. Another

oblique shock wave is generated by the trailing edge of the bump. The three-dimensional

Mach number contours, fig. 4, show the flow decelerating from Moo -----2.4 to Moo = 9.. in

the concave region of the bump and then accelerating back to Moo -- 9..5 in the convex

region. The oblique shock wave and expansion fans are clearly shown by the figure. The

concave region of the bump where the pressure increases and the Mach number decreases

will also be referred to as the adverse pressure gradient region, while the convex part of the

bump where the pressure decreases and the Mach number increases will be referred to as

the favorable pressure gradien_ region. Figure 5 shows the mean velocity profile at various

downstream locations. At x = 0.5 ft, just before the bump, u/u_ = 1. everywhere except

near the wall. For 0.5 < x < 2., adverse pressure gradient region, u < u e corresponding

to a decelerated flow. For 2. < x < 3.5, favorable pressure gradient region, u > u e

corresponding to an accelerated flow.

The unsteady calculation was run using an excitation amplitude of e -- 0.08 together

with a broadband random noise in space and time (eqn. (29.)). Figure 6 shows the power

spectral density (PSD) of the pressure at the center of the two flexible plates. The level

of the PSD of the pressure in the favorable pressure gradient region is everywhere lower

than that in the adverse pressure gradient region. This is due to a decrease in the pressure

fluctuations over that region. However, the decrease is more pronounced at higher frequen-

cies (4000 to 6000 Hz) than it is at lower frequencies (0 to 2000 Hz) due to the combined

effect of thicker boundary layer and reduced pressure fluctuations. Above 6000 Hz, there

is little difference between the two PSDs as both the physical and numerical dissipation

become dominant at high frequencies. Boundary layer thickness effect will be discussed in

section [4.3]. A strong low frequency component, near zero, is observed in the favorable

pressure gradient PSD. The PSDs of the displacement response at the center of the two

plates axe shown on fig. 7. As expected, the response of the plate located in the adverse

pressure gradient region is higher than that of the plate located in the favorable pressure

gradient region. The response obtained above 2000 Hz is not meaningful because of the

lack of numerical resolution on the panels. For both plates, the response is dominated
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by the first mode. The time histories ofthe radiated pressure from each plate and the

total radiated pressure are shown on figs. 8a-c. The point at which the radiated pressure

is calculated is located 0.5 ft away from the center of the two plates. Figures 8a and

8c, corresponding to acoustic radiation from the adverse pressure gradient plate and the

total radiation from both plates, respectively; are nearly identical. The acoustic radiation

from the plate located in the favorable pressure gradient is shown on fig. 8b. From this

result one concludes that the total acoustic radiation, fig. 8c, is dominated by that of the

plate located in the adverse pressure gradient region. The PSDs of the radiated acoustic

pressure from the two plates are shown on fig. 9. The figure shows that the panel located

in the adverse pressure gradient region radiates more than the one located in the favorable

pressure gradient region at all frequencies. The difference is more pronounced at higher

frequencies than it is at lower frequencies. In particular, the difference is small at the first

mode which appears as a strong peak in the PSD of the favorable pressure panel radiation.

Both PSDs show the presence of distinct peaks in the decaying part of the spectrum.

Figure 10 shows the instantaneous vertical fluid velocity distribution over the bottom

rigid and flexible surfaces. A non-zero vertical vdocity is shown in the regions where the

flexible plates are located. This figure shows the coupling effects on the fluid vertical ve-

locity. Figure 11 shows the instantaneous displacement response for both flexible plates.

Since the excitation is symmetric in the spanwise direction, both plates show symmetric

displacement responses. The plate located in the adverse pressure gradient region shows

a (3,1) mode type displacement response, while the plate located in the favorable pres-

sure gradient region shows a (1,1) mode type response. At another instant in time, this

displacement response behavior might show a different combination of symmetric modes.

4.2 Comparisons to Experiments

As mentioned in the introduction, several experiments have been conducted to access

the effects of pressure gradients in both subsonic and supersonic flow regimes. Several flow

quantities were measured, however, no measurement was reported on the wall pressure

fluctuations. In this sub-section, comparisons of the numerical results obtained using the

geometry and flow conditions given in sub-section 4.1 to the measurements of Bowersox

and Buret [4] and Webster e_ al. [5], are made. Figure 12a shows the nondimensional

static pressure measured by Bowersox along the streamwise direction, for the favorable

and combined (adverse and favorable) pressure gradients. The figure shows that the pres-

sure decreases with downstream distance for the favorable pressure gradient case (dashed

curve), while it increases for some distance z and then decreases in the combined case. Fig-

ure 12b shows the nondimensional Favre averaged FLeynolds stress (_-zu/_-_ 2) as a function

of the nondimensional vertical distance(v/6 ) measured in the favorable, zero and com-

bined pressure gradients regions. The Favre averaged Reynolds stresses are the smallest in

the favorable pressure gradient region and are nearly identical in the zero and combined

pressure gradient regions. Moreover, in the favorable pressure gradient region, the Favre

averaged Reynolds stresses are nearly zero for y/6 > 0.4, while for the other two cases, the

Favre averaged Reynolds stresses become zero only outside the boundary layer.

Figure 13a shows the streamwise nondimensional pressure distribution obtained nu-

merically for the geometry and flow conditions given in sub-section 4.1. As shown by the
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figure, adverse, favorable and zero pressure gradients regions exist. The pressure increases

until it reaches a maximum at the middle of the concave surface then starts decreasing to

a minimum value at the middle of the convex surface, then increases back to its starting

value. The pressure before and after the bump remains constant (zero pressure gradient

regions). Figure 13b shows a nondimensional Favre averaged Reynolds stress as a function

of the nondimensional vertical distance at three locations in the zero, adverse and favorable

pressure gradient areas, respectively. The zero pressure gradient area considered is the one

before the bump. The adverse pressure gradient location is near the center of the concave

surface, while the favorable pressure gradient location is near the middle of the convex

surface. The figure shows that in the favorable pressure gradient area, the Favre averaged

Reynolds stresses are much smaller than those in adverse and zero pressure gradient areas

which is in agreement with the measurement of Bowersox and Buter [4]. However, the nu-

merical results show that the Favre averaged Reynolds stresses are very small over a larger

portion of the boundary layer for the favorable pressure gradient case. This difference may

be due to the turbulence model used. In agreement with Bowersox and Buter's results [4],

the zero and adverse pressure gradient Favre averaged Reynolds stress are nearly identical.

The nondimensionalization used by Bowersox and Buter [41 is different from the one used

in this paper, which explains the difference in the Favre averaged Reynolds stress scales.

Figure 14 shows the nondimensional mean velocity profile obtained by this calculation

in the various regions of the domain. In the zero pressure gradient area ahead of the bump,

the mean velocity profile shows a smooth variation. In the adverse pressure gradient region

near the center of the concave surface, the velocity profile shows a reduction in speed in the

outer region of the boundary layer, compared to the zero pressure gradient case, followed

by a sharp rise due to the presence of an oblique shock wave. In the favorable pressure

gradient case, the velocity is higher than that of the favorable pressure gradient case for

10 -3 < y/g < 10 -1 then becomes lower for 10 -1 < y/g < 10 before going through a jump

back to u/Ue = 1. The behavior of the velocity profile in the favorable pressure gradient

region is affected by the adverse pressure gradient area and the presence of the oblique

shock wave. Qualitatively, this behavior is similar to that observed by Bowersox and Buter

[4]. Figure 15 shows the skin friction coefficient as a function of the downstream distance.

Near the leading edge of the bump, the skin friction goes through a sharp jump before

undergoing a smoother variation over the concave and convex areas of the bump. The

behavior of the skin friction over the bump is similar to that of the pressure (fig.13a).

4.3 Effects of Boundary-Layer Thickness

The effects of boundary-layer thickness on the plate response and radiation are anal-

ysed for both adverse and favorable pressure gradients. The approach used in both cases is

the same; i.e. the flexible plate is placed 1 ft and 3 ft away from the leading edge, respec-

tively. The computational domains used in the favorable and adverse pressure gradient

calculations are shown on figs. 16a-b. In the favorable pressure gradient case, a diverging

channel is used to accelerate the flow, fig. 16a. In the adverse pressure gradient case,

the bottom surface is smoothly curved upward to decelerate the flow, fig. 16b. The same

number of grid points is used in both cases; i.e. 197x81x49 in the streamwise, vertical and

spanwise directions, respectively. Typical velocity profiles at the two locations are shown
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on fig. 17 for a favorable pressure gradient case. The velocity profile at 3 ft shows a thicker

boundary layer than that at 1 ft. The velocity profiles for the adverse pressure gradient

case are similar. Figures 18a-b show the PSDs of the wall pressure fluctuation and the

plate's vertical velocity both taken at the plate's center for the favorable pressure gradient

case. The PSD of the wall pressure fluctuation shows that at both locations the level of

the low frequencies is the same while that of the high frequencies is different, fig. 18a. At

3 ff, the high frequencies have a lower level than that at 1 ft. The figure shows also that

the peak frequency has shifted to the lower frequencies at the 3 f_ location. This is partly

explained by the fact that as the boundary layer grows thicker, the large scale structures

become more dominant. Another possible mechanism that could explain this difference is

the combination of viscous and numerical damping. In order to check the effects of the

later mechanism a finer grid was used, the results were found to be nearly identical with

a negligible difference at high frequencies. The PSD of the center plate vertical velocity

shows the presence of several peaks corresponding to the symmetric modes of the plate,

fig. 18b. When the center is located at 3 ft away from the leading edge, the high frequency

peaks have a lower amplitude than when it is located at 1 ft. This is in agreement with

the PSD of the wall pressure fluctuation. Figures 19a-b show similar results for the adverse

pressure gradient case. The wall pressure fluctuation PSD, fig. 19a, shows that the high

frequencies have a lower level at 3 ff than at 1 ft, Note that the shifting of the peak is

not as pronounced in this case. Similarly, the PSDs of the center plate vertical velocity,

fig. 19b, show little or no-difference at low frequencies and a significant difference at high

frequencies.

4.4 Effects of Reynolds Number

Two different Reynolds numbers are used in this study for both the adverse and fa-

vorable pressure gradients. The Reynolds numbers chosen are 3x10 s and 12x10 s. Figures

20a-b show the PSDs of the fluctuating surface pressure and vertical velocity at the plate

center for the favorable pressure gradient case. The PSDs of the surface pressure fluctu-

ation, fig. 20a, show that the curve corresponding to the Reynolds number 12x10 s has

a higher level than that for the Reynolds number 3x10 s over the entire frequency range.

This is due to the fact that at higher Reynolds numbers, the wall shear-stress increases

leading to an increase in wall pressure. As a results, the increased loading on the plate

leads to an increase in the response at higher Reynolds numbers, as shown on fig. 20b. A

similar result is obtained in the adverse pressure gradient case as shown on figs. 21a-b.

One should note that the levels of all PSDs is higher in the adverse pressure gradient case,

figs. 21a-b, than it is in the favorable one, figs. 20a-b.

5. Concluding Remarks

The results presented in this paper show that;

• Results are in good qualitative agreement with experiments.

• Adverse pressure gradients lead to an increase in plate loading and therefore its

response and radiation are increased.

• Favorable pressure gradients lead to a decrease in plate loading and therefore its

response and radiation are reduced.
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• All increase in Reynolds number leads to an increase in plate loading and therefore

response and radiation.

• As the boundary layer thickness increases, the high frequency content is reduced

and their energy content transferred to the low frequencies.
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Figure 1: 3D Computational domain.



Figure 2: 3D S t at ic p r essu r e cont o ur s.
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Figure 3D Static pressure surfaces.
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Figure 4: 3D Mach number contours.
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Figure 8: Time history of the radiated acoustic pressure 0.5 ft away from the center of

the flexible plates. (a) From the adverse pressure gradient plate, (b) from the

favorable pressure gradient plate and (c) from both plates.
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Figure 10: Fluid vertical velocity distribution over the

rigid and flexible surfaces.
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F igure 11: Instantaneous displacement response of the

flexible plates.

1.9E-4

3.2E-5

-1.2E-4

2.8E-4

1.9E-4

1.0E-4

1.5E-5



(a)

2.0 "_ I Favorable PressureGradient

1.2
P,,u/P ]

0.8 _'_
----a

0.4

62.0 64.0 66.0 68.0 70.0 72.0

x(cm)

y/8

1.8 --_ @
1.6 I II

1.4 I •

1.2 --o

(b)
Zero PressureG radieut

FavorablePressureGradient

Combined PressureGradient

Figure 12: From Bowersox and Buter's paper [4], (a) Static pressure distribution along the

streamwise direction, (b) Favre averaged Reynolds stresses.
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Figure 13a: Static pressuredistribution along the streamwisedirection.
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Figure 16a: Computational domain used in the favor-

able pressure gradient calculation.
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Figure 16b: Computational domain used in the adverse

pressure gradient calculation.
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Figure 18: Favorable pressure gradient: (a) PSD of the wail pressure fluctuation at the center

of the flexible plate, (b) PSD of the displacement response at the center of the
flexible plate.
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Figure 19: Adverse pressure gardient: (a)PSD of the wall pressure fluctuation at the center

of the flexible plate, (b) PSD of the displacement response at the center of the

flexible plate.
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Figure 20" Favorable pressure gradient: (a) PSD of the wall pressure fluctuation at the center

of the flexible plate, (b) PSD of the displacement response at the center of the

flexible plate.
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Figure 21: Adverse pressure gardient: (a)PSD of the wall pressure fluctuation at the center

of the flexible plate, (b) PSD of the displacement response at the center of the
flexible plate.
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